Statistics of critical points of Gaussian fields on large-dimensional spaces.
نویسندگان
چکیده
We calculate the average number of critical points of a Gaussian field on a high-dimensional space as a function of their energy and their index. Our results give a complete picture of the organization of critical points and are of relevance to glassy and disordered systems and landscape scenarios coming from the anthropic approach to string theory.
منابع مشابه
Harmonicity and Minimality of Vector Fields on Lorentzian Lie Groups
We consider four-dimensional lie groups equipped with left-invariant Lorentzian Einstein metrics, and determine the harmonicity properties of vector fields on these spaces. In some cases, all these vector fields are critical points for the energy functional restricted to vector fields. We also classify vector fields defining harmonic maps, and calculate explicitly the energy of t...
متن کاملStable Gaussian radial basis function method for solving Helmholtz equations
Radial basis functions (RBFs) are a powerful tool for approximating the solution of high-dimensional problems. They are often referred to as a meshfree method and can be spectrally accurate. In this paper, we analyze a new stable method for evaluating Gaussian radial basis function interpolants based on the eigenfunction expansion. We develop our approach in two-dimensional spaces for so...
متن کاملOn some fixed points properties and convergence theorems for a Banach operator in hyperbolic spaces
In this paper, we prove some fixed points properties and demiclosedness principle for a Banach operator in uniformly convex hyperbolic spaces. We further propose an iterative scheme for approximating a fixed point of a Banach operator and establish some strong and $Delta$-convergence theorems for such operator in the frame work of uniformly convex hyperbolic spaces. The results obtained in this...
متن کاملSOME POINTS ON CASIMIR FORCES
Casimir forces of massive ferrnionic Dirac fields are calculated for parallel plates geometry in spatial space with dimension d and imposing bag model boundary conditions. It is shown that in the range of ma>>l where m is mass of fields quanta and a is the separation distance of the plates, it is equal to massive bosonic fields Casimir force for each degree of freedom. We argue this equalit...
متن کاملExpected Number and Height Distribution of Critical Points of Smooth Isotropic Gaussian Random Fields
Abstract: We obtain formulae for the expected number and height distribution of critical points of general smooth isotropic Gaussian random fields parameterized on Euclidean space or spheres of arbitrary dimension. The results hold in general in the sense that there are no restrictions on the covariance function of the field except for smoothness and isotropy. The results are based on a charact...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 98 15 شماره
صفحات -
تاریخ انتشار 2007